What does seem clear, however, is that warmer temperatures bias sex ratios toward females but by how much, how often, and at what beach locations? Boris Tezak and his collaborator, Itzel Sifuentes are attempting to answer these questions. The problem is that hatchling sex can’t be determined by external appearance. In the past, the only alternatives were to sacrifice the turtle to examine its reproductive organs (not a solution when dealing with endangered species!) or to rear turtles in the laboratory until they were large enough to distinguish sex by laparoscopy (a time-consuming and expensive procedure).
Tezak and Sifuentes have developed a reliable method for determining hatchling sex by taking a small drop of blood and testing for the presence of sex-specific proteins. That procedure should allow biologists to immediately and inexpensively estimate the sex ratios of the turtles produced annually from nests placed not only on Florida’s beaches, but on nesting beaches worldwide.
Given that climate change is likely to shift sex ratios toward the production of more females, could there come a time some 15-20 years from now (as today’s hatchlings become sexually mature) when there won’t be enough males to service all the females? Since mating takes place out to sea, how would we even know that such a problem existed? We might recognize the problem if we knew how many males mate with individual females now, making any change occurring later obvious. Jake Lasala has been using genetics to characterize mating patterns and, at the same time, estimate the number of sexually active males to sexually active females present in current populations. His findings thus far indicate that some marine turtles are promiscuous, that is, the 100 or so hatchlings from each nest usually are sired by more than one father. Each female loggerhead, for example, mates with between 4 and 5 males whereas each green turtle female mates with 1-3 males. Jake has not found the same male mating with more than any one of the many females whose nests he has surveyed. That suggests that presently, there are plenty of males for each female but that situation could change if warmer temperatures result in nests producing an overabundance of female hatchlings. This study also leads to another important conclusion: females apparently prefer to mate with more than one male, probably because by doing so they produce hatchlings that are more genetically diverse than if their mom had only one mate. That diversity could promote better hatchling survival but advantages like that disappear if male representation in the population continues to decline.